

CLTPLUS PRELIMINARY DIMENSIONING

PRELIMINARY DIMENSIONING

Basis: ÖNORM EN 1995-1-1:2015 / B 1995-1-1:2019, ÖNORM EN 1995-1-2:2011 / B 1995-1-2:2011

Preliminary dimensioning of KPZT

These tables serve only for preliminary dimensioning and are not a substitute for static dimensioning.

CALCULATION PARAMETERS

1. MATERIAL DATA

The calculations are based on the material parameters according to ETA-20-0843 of 16.11.2020, Theurl Timber Structures, the following manufacturer-specific values are used.

$$E_{0,mean} = 11\ 600\ MPa$$
 $G_{090,mean} = 690\ MPa \text{ (panel plane)}$ $f_{c,0,k} = 21\ MPa$ $f_{m,k} = 24\ MPa$ $k_{def} = 0.8$

2. VERIFICATION

CLTPLUS net weight with ρ = 550 kg/m³ assumed and taken into account in the tables Loads category A (Ψ_0 = 0.7, Ψ_1 = 0.5, Ψ_2 = 0.3), k_{mod} =0.8)

Verification in the limit state of serviceability, Applied limit values of deflection:

Characteristic design situation $w_{inst} = 1/300$ Quasi-constant design situation $w_{net, fin} = 1/250$ $w_{fin} = 1/250$

Vibration verification

Requirements for ceiling class 1:

Constructive requirement - 6 cm wet screed floating on the fill

Frequency criterion $f_1 \ge f_{gr} = 8 \text{ Hz or } f_{1,min} \ge 4.5 \text{ Hz}$

Stiffness criterion $\begin{array}{ll} \text{Stiffness criterion} & \text{W}_{\text{stat}} \leq \text{W}_{\text{gr}} = 0.25 \text{ mm} \\ \text{Vibration acceleration} & \text{a}_{\text{rms}} \leq \text{agr} = 0.05 \text{ m/s}^2 \\ \text{Dimensioning with degree of damping} & \zeta = 0.04 \text{ (wet coat)} \\ \end{array}$

Verification in the limit state of load-bearing capacity:

Verification of bending stresses Verification of shear stresses

Verification of fire resistance

One-sided burn-off (ceiling and outer wall) Applied charring rates (according to the standard): $\beta_0 = 0.65 \text{ mm/min}$ $\beta_{1a} = 1.30 \text{ mm/min}$ $\beta_{1b} = 0.65 \text{ mm/min}$

You can also choose us as a manufacturer in WALLNER MILD or Dietrichs. Information on various construction details can be found at www.dataholz.eu.

TABLE: THEURL CLTPLUS AS A CEILING - SINGLE-SPAN BEAM

Slab thicknesses with maximum spans

Ceiling verification

Residential construction - heavy ceiling structures:

6.5 cm coat; 10 cm grit (200 kg/m²) etc.; Total load: 4.0 kN/m²; Load 3.2 kN/m²

Span [m]									
Vibration DK I	3.7	4	4.5	5.0	5.6	6.2	7.1		
	140 L5	160 L5	180 L5	200 L5	220 L7	240 L7	280 L7 · 2		
Span [m]									
Vibration	3.9	4.3	4.7	5.5	6.1	6.7	7.5		
DK II	140 L5	160 L5	180 L5	200 L7 · 2	220 L7 · 2	240 L7 · 2	280 L7 · 2		

Single-family houses - very light ceiling structures

 $6.5~\mathrm{cm}$ coat; $10~\mathrm{cm}$ light fill ($20~\mathrm{kg/m^2}$) construction $2.5~\mathrm{kN/m^2}$; Load $2.8~\mathrm{kN/m^2}$

Span [m]								
Vibration	3.1	3.7	4.3	4.8	5.3	6.1	6.8	
DK II	100 L3	120 L3	140 L5	160 L5	180 L5	200 L7 · 2	220 L7 · 2	

Roof verification (DK III)

Construction 2.0 kN/m² variable load 2.5 kN/m²;

Span [m]								
SLS	4.5	5.1	5.6	6.5	7.1	7.7	8.3	
DK III	140 L5	160 L5	180 L5	200 L7 · 2	220 L7 · 2	240 L7 · 2	260 L7 · 2	

Fire R0 R30 R60 R90

TABLE: THEURL CLTPLUS AS A CEILING - SINGLE-SPAN BEAM

Vibration verification for ceiling class 1 (DKL I.) with wet coat

Calculation: ETA 20/0843 of 16.11.2020

ÖNORM EN 1995-1-1:2015 / B 1995-1-1:2019 ÖNORM EN 1995-1-2:2011 / B 1995-1-2:2011

Minimum panel thickness for the specified spans

Perma- nent load ¹⁾	Load ^{2]}				Span l			
g _k [kN/ m ²]	n _k [kN/m²]	3.0 m	3.5 m	4.0 m	4.5 m	5.0 m	6.0 m	7.0 m
	2.0		140 L5	140 L5	160 L5	180 L5	220 L7	280 L7 · 2
	2.8			140 L5				
1.5	3.0	120 L3						
	4.0			, , , , ,				
	5.0							
	2.0							000 5
	2.8	400.0	140 L5					
2.0	3.0	120 L3		140 L5	160 L5	200 L5	240 L7	280 L7 · 2
	4.0		1/015					
	5.0		140 L5					
	2.0	120 L3	140 L5	140 L5	160 L5	200 L5	240 L7	280 L7 · 2
2.5	3.0							
2.5	4.0							
	5.0			160 L5	180 L5			
	2.0			100 L3	100 20			
	2.8	120 L3		160 L5	180 L5	200 L5	240 L7	280 L7 · 2
3.0	3.0		140 L5					
	4.0							
	5.0							
4.0	2.0	1.0 1.8 1.0 L3 1.0 L3		160 L5	180 L5	200 L5	240 L7	280 L7 · 2
	2.8		140 L5					
	3.0							
	4.0							
	5.0		5.0 200 L5	200 L5	220 L7	260 L7 · 2		

 $^{^{1)}}$ The CLTPLUS net weight with $\rho=550$ kg/m³ is assumed and has already been taken into account in the table $^{2)}$ Load category A [Ψ_0 = 0.7; Ψ_1 = 0.5; $\Psi2$ = 0.3] k_{mod} = 0.8 k_{def} = 0.8

Verification:

Load-bearing capacity: Bending stress [M]

Shear stress [Q]

Usability: QS $w_{fin} = l/250$

CH $w_{inst} = l/300$ $w_{net,fin} = l/250$ R0 R30 R60 R90

TABLE: THEURL CLTPLUS AS A CEILING - SINGLE-SPAN BEAM

No vibration specifications

Calculation: ETA 20/0843 of 16.11.2020

ÖNORM EN 1995-1-1:2015 / B 1995-1-1:2019

ÖNORM EN 1995-1-2:2011 / B 1995-1-2:2011

Minimum panel thickness for the specified spans

Permanent load 1)	Load ^{2]}				Span l			
g _k [kN/ m ²]	n _k [kN/m²]	3.0 m	3.5 m	4.0 m	4.5 m	5.0 m	6.0 m	7.0 m
	1	80 L3	90 L3	100 L3	120 L3	120 L3	160 L5	200 L5
	2	00 L3	100 L3	120 L3	120 LS	140 L5	180 L5	220 L7
1	3	90 L3	100 L3	120 L3	140 L5	160 L5	200 L5	ZZU L/
	4	100 L3	120 L3	140 L5	140 LJ	100 LJ	200 L3	240 L7
	5	100 L3	120 L3	140 LJ	160 L5	180 L5	220 L7	Z40 L7
	1	90 L3	100 L3	120 L3	140 L5	140 L5	180 L5	220 L7
	2	70 L3		120 L3	140 L3	160 L5	200 L5	220 L7 · 2
2	3	100 L3	120 L3			100 L3		220 L7 * 2
	4	100 L3		140 L5	160 L5	180 L5	220 L7	240 L7 · 2
	5	120 L3	140 L5			100 L3		Z40 L7 * Z
	1		120 L3		140 L5	160 L5	200 L5	220 L7 · 2
	2	100 L3	120 L0	140 L5	160 L5	180 L5		240 L7 · 2
3	3		120 L3		100 20	100 20	220 L7	240 L7 2
	4	120 L3	140 L5	160 L5	180 L5	200 L5		260 L7 · 2
	5	. 20 20		.00 20	.00 20	200 20	220 L7 · 2	200 27 2
	1	100 L3	120 L3	140 L5	160 L5	180 L5	220 L7	240 L7 · 2
	2							
4	3	120 L3	140 L5			200 L5	220 L7 · 2	260 L7 · 2
	4	120 L3		160 L5	180 L5			280 L7 · 2
	5	120 20				220 L7	240 L7 · 2	200 2,7 2

¹⁾ The CLTPLUS net weight with $\rho = 550 \text{ kg/m}^3$ is assumed and has already been taken into account in the table $^{2]}$ Load category A (Ψ_{0} = 0.7; Ψ_{1} = 0.5, Ψ_{2} = 0.3) k_{mod} = 0.8 $k_{def} = 0.8$

Verification:

Load-bearing capacity: Bending stress [M]

Shear stress [Q]

Usability: $QS w_{fin} = l/250$

CH $w_{inst} = l/300$

 $W_{\text{net,fin}} = 1/250$

TABLE: THEURL CLTPLUS AS EXTERIOR WALL

Calculation: ETA 20/0843 of 16.11.2020

> ÖNORM EN 1995-1-1:2015 / B 1995-1-1:2019 ÖNORM EN 1995-1-2:2011 / B 1995-1-2:2011

Wind pressure: $W_k = 1.0 \text{ kN/m}^2$

¹⁾ The CLTPLUS net weight with $\rho = 550 \text{ kg/m}^3$ is assumed and has already been taken into account in the table

 $| \ |$

 $| \cdot |$

l

²⁾ Load catageory A kmod = 0.8

Verification:

Verification as a buckling bar (pressure according to the substitute bar method) Load-bearing capacity:

Unilateral fire attack

Minimum panel thicknesses for various buckling lengths and fire resistance (R0 to R90)

